3#include "quill/LogMacros.h"
6 using fourdst::atomic::Species;
10 const std::string &fileName,
30 const std::vector<double> &Y_defined,
37 const auto [dydt, nuclearEnergyGenerationRate] =
m_baseEngine.calculateRHSAndEnergy(Y_full, T9, rho);
42 return definedResults;
46 const std::vector<double> &Y_defined,
65 return m_baseEngine.getJacobianMatrixEntry(i_full, j_full);
75 const int speciesIndex_defined,
76 const int reactionIndex_defined
82 return m_baseEngine.getStoichiometryMatrixEntry(i_full, j_full);
87 const std::vector<double> &Y_defined,
94 LOG_ERROR(
m_logger,
"Reaction '{}' is not part of the active reactions in the file defined engine view.",
reaction.id());
96 throw std::runtime_error(
"Reaction not found in active reactions: " + std::string(
reaction.id()));
109 const std::vector<double> &Y_defined,
116 const auto fullTimescales =
m_baseEngine.getSpeciesTimescales(Y_full, T9, rho);
118 std::unordered_map<Species, double> definedTimescales;
120 if (fullTimescales.contains(active_species)) {
121 definedTimescales[active_species] = fullTimescales.at(active_species);
124 return definedTimescales;
136 LOG_DEBUG(
m_logger,
"File '{}' set to '{}'. FileDefinedNetworkView is now stale! You MUST call update() before you use it!",
m_fileName, fileName);
148 LOG_TRACE_L1(
m_logger,
"Constructing species index map for file defined engine view...");
149 std::unordered_map<Species, size_t> fullSpeciesReverseMap;
150 const auto& fullSpeciesList =
m_baseEngine.getNetworkSpecies();
152 fullSpeciesReverseMap.reserve(fullSpeciesList.size());
154 for (
size_t i = 0; i < fullSpeciesList.size(); ++i) {
155 fullSpeciesReverseMap[fullSpeciesList[i]] = i;
158 std::vector<size_t> speciesIndexMap;
162 auto it = fullSpeciesReverseMap.find(active_species);
163 if (it != fullSpeciesReverseMap.end()) {
164 speciesIndexMap.push_back(it->second);
166 LOG_ERROR(
m_logger,
"Species '{}' not found in full species map.", active_species.name());
168 throw std::runtime_error(
"Species not found in full species map: " + std::string(active_species.name()));
171 LOG_TRACE_L1(
m_logger,
"Species index map constructed with {} entries.", speciesIndexMap.size());
172 return speciesIndexMap;
177 LOG_TRACE_L1(
m_logger,
"Constructing reaction index map for file defined engine view...");
180 std::unordered_map<std::string_view, size_t> fullReactionReverseMap;
181 const auto& fullReactionSet =
m_baseEngine.getNetworkReactions();
182 fullReactionReverseMap.reserve(fullReactionSet.size());
184 for (
size_t i_full = 0; i_full < fullReactionSet.size(); ++i_full) {
185 fullReactionReverseMap[fullReactionSet[i_full].id()] = i_full;
189 std::vector<size_t> reactionIndexMap;
193 auto it = fullReactionReverseMap.find(active_reaction_ptr.id());
195 if (it != fullReactionReverseMap.end()) {
196 reactionIndexMap.push_back(it->second);
198 LOG_ERROR(
m_logger,
"Active reaction '{}' not found in base engine during reaction index map construction.", active_reaction_ptr.id());
200 throw std::runtime_error(
"Mismatch between active reactions and base engine.");
204 LOG_TRACE_L1(
m_logger,
"Reaction index map constructed with {} entries.", reactionIndexMap.size());
205 return reactionIndexMap;
209 LOG_TRACE_L1(
m_logger,
"Building file defined engine view from {}...", fileName);
210 auto [reactionPENames] =
m_parser.parse(fileName);
215 std::unordered_set<Species> seenSpecies;
217 const auto& fullNetworkReactionSet =
m_baseEngine.getNetworkReactions();
218 for (
const auto& peName : reactionPENames) {
219 if (!fullNetworkReactionSet.contains(peName)) {
220 LOG_ERROR(
m_logger,
"Reaction with name '{}' not found in the base engine's network reactions. Aborting...", peName);
222 throw std::runtime_error(
"Reaction with name '" + std::string(peName) +
"' not found in the base engine's network reactions.");
224 auto reaction = fullNetworkReactionSet[peName];
225 for (
const auto& reactant :
reaction.reactants()) {
226 if (!seenSpecies.contains(reactant)) {
227 seenSpecies.insert(reactant);
231 for (
const auto& product :
reaction.products()) {
232 if (!seenSpecies.contains(product)) {
233 seenSpecies.insert(product);
240 LOG_DEBUG(
m_logger,
"Active species: {}", [
this]() -> std::string {
243 result += std::string(species.name()) +
", ";
245 if (!result.empty()) {
251 LOG_DEBUG(
m_logger,
"Active reactions: {}", [
this]() -> std::string {
254 result += std::string(
reaction.id()) +
", ";
256 if (!result.empty()) {
268 std::vector<double> full(
m_baseEngine.getNetworkSpecies().size(), 0.0);
269 for (
size_t i_culled = 0; i_culled < culled.size(); ++i_culled) {
271 full[i_full] += culled[i_culled];
278 for (
size_t i_culled = 0; i_culled <
m_activeSpecies.size(); ++i_culled) {
280 culled[i_culled] = full[i_full];
286 if (culledSpeciesIndex < 0 || culledSpeciesIndex >=
static_cast<int>(
m_speciesIndexMap.size())) {
287 LOG_ERROR(
m_logger,
"Defined index {} is out of bounds for species index map of size {}.", culledSpeciesIndex,
m_speciesIndexMap.size());
289 throw std::out_of_range(
"Defined index " + std::to_string(culledSpeciesIndex) +
" is out of bounds for species index map of size " + std::to_string(
m_speciesIndexMap.size()) +
".");
295 if (culledReactionIndex < 0 || culledReactionIndex >=
static_cast<int>(
m_reactionIndexMap.size())) {
296 LOG_ERROR(
m_logger,
"Defined index {} is out of bounds for reaction index map of size {}.", culledReactionIndex,
m_reactionIndexMap.size());
298 throw std::out_of_range(
"Defined index " + std::to_string(culledReactionIndex) +
" is out of bounds for reaction index map of size " + std::to_string(
m_reactionIndexMap.size()) +
".");
305 LOG_ERROR(
m_logger,
"File defined engine view is stale. Please call update() with a valid NetIn object.");
307 throw std::runtime_error(
"File defined engine view is stale. Please call update() with a valid NetIn object.");
Abstract class for engines supporting Jacobian and stoichiometry operations.
const io::NetworkFileParser & m_parser
Active species in the defined engine.
double getJacobianMatrixEntry(const int i_defined, const int j_defined) const override
Gets an entry from the Jacobian matrix for the active species.
std::string m_fileName
Parser for the network file.
void generateStoichiometryMatrix() override
Generates the stoichiometry matrix for the active reactions and species.
std::vector< fourdst::atomic::Species > m_activeSpecies
Active reactions in the defined engine.
StepDerivatives< double > calculateRHSAndEnergy(const std::vector< double > &Y_defined, const double T9, const double rho) const override
Calculates the right-hand side (dY/dt) and energy generation for the active species.
void buildFromFile(const std::string &fileName)
Builds the active species and reaction sets from a file.
void generateJacobianMatrix(const std::vector< double > &Y_defined, const double T9, const double rho) override
Generates the Jacobian matrix for the active species.
const DynamicEngine & getBaseEngine() const override
Gets the base engine.
std::vector< size_t > constructSpeciesIndexMap() const
Constructs the species index map.
const reaction::LogicalReactionSet & getNetworkReactions() const override
Gets the set of active logical reactions in the network.
bool m_isStale
A flag indicating whether the view is stale and needs to be updated.
size_t mapViewToFullReactionIndex(size_t definedReactionIndex) const
Maps a culled reaction index to a full reaction index.
const std::vector< fourdst::atomic::Species > & getNetworkSpecies() const override
Gets the list of active species in the network defined by the file.
FileDefinedEngineView(DynamicEngine &baseEngine, const std::string &fileName, const io::NetworkFileParser &parser)
Constructs a FileDefinedEngineView.
void setNetworkFile(const std::string &fileName)
Sets a new network file to define the active reactions.
std::vector< double > mapFullToView(const std::vector< double > &full) const
Maps a vector of full abundances to a vector of culled abundances.
quill::Logger * m_logger
A pointer to the logger instance.
int getStoichiometryMatrixEntry(const int speciesIndex_defined, const int reactionIndex_defined) const override
Gets an entry from the stoichiometry matrix for the active species and reactions.
size_t mapViewToFullSpeciesIndex(size_t definedSpeciesIndex) const
Maps a culled species index to a full species index.
double calculateMolarReactionFlow(const reaction::Reaction &reaction, const std::vector< double > &Y_defined, const double T9, const double rho) const override
Calculates the molar reaction flow for a given reaction in the active network.
void update(const NetIn &netIn) override
Updates the engine view if it is marked as stale.
std::unordered_map< fourdst::atomic::Species, double > getSpeciesTimescales(const std::vector< double > &Y_defined, const double T9, const double rho) const override
Computes timescales for all active species in the network.
DynamicEngine & m_baseEngine
The underlying engine to which this view delegates calculations.
void setScreeningModel(screening::ScreeningType model) override
Sets the screening model for the base engine.
std::vector< double > mapViewToFull(const std::vector< double > &defined) const
Maps a vector of culled abundances to a vector of full abundances.
screening::ScreeningType getScreeningModel() const override
Gets the screening model from the base engine.
reaction::LogicalReactionSet m_activeReactions
Maps indices of active species to indices in the full network.
void validateNetworkState() const
Validates that the FileDefinedEngineView is not stale.
std::vector< size_t > constructReactionIndexMap() const
Constructs the reaction index map.
std::vector< size_t > m_speciesIndexMap
Maps indices of active reactions to indices in the full network.
std::vector< size_t > m_reactionIndexMap
An abstract base class for network file parsers.
Represents a single nuclear reaction from a specific data source.
TemplatedReactionSet< LogicalReaction > LogicalReactionSet
A set of logical reactions.
ScreeningType
Enumerates the available plasma screening models.
Structure holding derivatives and energy generation for a network step.
T nuclearEnergyGenerationRate
Specific energy generation rate (e.g., erg/g/s).
std::vector< T > dydt
Derivatives of abundances (dY/dt for each species).